Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Immunol ; 6(60)2021 06 18.
Article in English | MEDLINE | ID: covidwho-1276879

ABSTRACT

The nutrient-sensing mammalian target of rapamycin (mTOR) is integral to cell fate decisions after T cell activation. Sustained mTORC1 activity favors the generation of terminally differentiated effector T cells instead of follicular helper and memory T cells. This is particularly pertinent for T cell responses of older adults who have sustained mTORC1 activation despite dysfunctional lysosomes. Here, we show that lysosome-deficient T cells rely on late endosomes rather than lysosomes as an mTORC1 activation platform, where mTORC1 is activated by sensing cytosolic amino acids. T cells from older adults have an increased expression of the plasma membrane leucine transporter SLC7A5 to provide a cytosolic amino acid source. Hence, SLC7A5 and VPS39 deficiency (a member of the HOPS complex promoting early to late endosome conversion) substantially reduced mTORC1 activities in T cells from older but not young individuals. Late endosomal mTORC1 is independent of the negative-feedback loop involving mTORC1-induced inactivation of the transcription factor TFEB that controls expression of lysosomal genes. The resulting sustained mTORC1 activation impaired lysosome function and prevented lysosomal degradation of PD-1 in CD4+ T cells from older adults, thereby inhibiting their proliferative responses. VPS39 silencing of human T cells improved their expansion to pertussis and to SARS-CoV-2 peptides in vitro. Furthermore, adoptive transfer of CD4+ Vps39-deficient LCMV-specific SMARTA cells improved germinal center responses, CD8+ memory T cell generation, and recall responses to infection. Thus, curtailing late endosomal mTORC1 activity is a promising strategy to enhance T cell immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Endosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , SARS-CoV-2/metabolism , Signal Transduction/genetics , Adoptive Transfer/methods , Adult , Aged , Aged, 80 and over , Animals , Autophagy-Related Proteins/deficiency , Autophagy-Related Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , COVID-19/virology , Cells, Cultured , Female , Forkhead Box Protein O1/deficiency , Forkhead Box Protein O1/genetics , Healthy Volunteers , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/immunology , Transfection , Vesicular Transport Proteins/deficiency , Vesicular Transport Proteins/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL